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1. Introduction 
   Fibre tracking, or tractography, using diffusion MRI information is unique in its ability to estimate the trajectories 
of white matter fibre bundles non-invasively. Diffusion weighted MRI (DWI) allows information regarding the 
orientation of axonal bundles to be encoded in each voxel of an MR image (typically, but not necessarily, an echo 
planar image). This voxel-by-voxel information provides estimates of the dominant fibre bundle orientations, which 
may then be extrapolated to provide estimates of the routes of inter-voxel, and hence inter-regional, fibre bundle 
connections. Fibre tracking is therefore a tool that allows two basic experiments to be performed: First, it is a 
segmentation method for isolating the white matter tracts within the brain. This is of potential interest to those who 
wish to identify functionally-relevant areas of white matter – white matter structures associated with a particular 
functional network (for example, the tracts of the motor system). Second, it is a method to identify those areas of the 
brain that are connected to each other via white matter tracts. This is of interest to those who wish to understand 
normal neuroanatomy and the effects of disease and abnormality (for example, disconnection within a network 
subsequent to infarction in the white matter). 
   This document first provides a brief summary of the main methods of fibre tracking. Application of tractography 
in situations of complex fibre architecture (crossing fibres, etc) is then explored, followed by a discussion of 
examples of the application of fibre tracking to allow quantitative measurements in the brain. 
 
2. Fibre Tracking Methods 
   Diffusion weighted MRI data, once suitably processed, provides information regarding fibre orientation in each 
image voxel. This information is present either as vectors representing dominant fibre bundle orientations or as 
continuous functions on the sphere representing the evidence for the presence of fibres at any given angle. 
 
2.1. ‘Streamline’ Methods 
   The best-established approach to the problem of 
tractography exploits the close analogy between the fibre 
orientation vector field in the brain and flow vector fields in 
fluid dynamics (1, 2). Tractography ‘streamlines’ typically 
utilise the principal eigenvector (ε1) of the diffusion tensor to 
provide a propagation direction for each voxel along the path, 
as it is generally accepted that ε1 is collinear with the 
principal orientation of fibre bundles when the tensor is an 
adequate model of tissue structure and noise is negligible (3). 
The process of streamline generation is then essentially a 
process of following the local vector information step-by-step 
until a full trajectory is created. Figure 1 shows an example 
of streamlines used to isolate the superior longitudinal 
fasciculus (using the methods presented in Catani et al (4)). 
 
2.2. Distributed Connection Methods  

e a single route of connection through any given point in the brain. A number 

, attempts have been made to 

Figure 1. Streamline reconstruction of the superior 
longitudinal fasciculus (image courtesy Derek Jones).

   Streamline methods generally provid
of methods have been proposed to provide more distributed patterns of connection to any point. These approaches 
have two main advantages: First, they have a natural ability to characterise branching structures in the brain (as seen, 
for example, in the corona radiata). Whilst it is possible to create the impression of branching by using large 
numbers of densely-packed tracking start points when using streamlines (Fig. 1), it remains an essentially ‘point-to-
point’ tracking method. Second, distributed tracking techniques provide a measure of the degree of inter-connection 
between voxels and brain regions, something that streamline methods cannot provide. 
   A number of distributed tracking methods have been proposed (5-10). For example
assess cerebral connections by using a simulated particle ‘random walk’ diffusion process, driven by the 
orientational diffusion characteristics measured in each voxel, with the aim of establishing patterns of connection in 
a distributed manner using Monte Carlo methods (5, 11, 6, 12). This process is allowed to continue until the random 
walk has reached some stopping criterion and each voxel in the brain encountered on the random walk is noted. This 
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is then repeated a large number of times and the frequency 
over all repeats at which any voxel in the brain is 
encountered by the random walk provides an index of the 
‘degree of connection’ from the start point to that voxel.  
   Other distributed tracking approaches include front 
evolution methods (13, 8, 14). These methods propagate a 
wavefront through the directional information provided using 
DWI, and differ from the Monte Carlo approaches in that the 
evolution of the front is deterministic rather than statistical. 
However, in common with the results of the Monte Carlo 
methods discussed above, front evolution methods generate 
maps of a distributed ‘degree of connection’ index. Figure 2 
shows an example of such a map, generated with the ‘fast 
marching tractography’ (FMT) method (13, 15, 16, 8).  
   Although distributed tracking methods generally provide 
some form of ranking of how much credence to give any 
identified connection, the exact interpretation of the ‘degree 
of connection’ varies considerably from method to method.  
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Figure 2. Connection to a 
single voxel in the 
splenium of the corpus 
callosum, as defined using 
the FMT method. Note 
distributed pattern of 
connection from start 
voxel, including branching.

 
2.3. Probabilistic Methods 
   The voxel fibre orientation functions used in distributed tracking methods allow connection probability, or the 
confidence with which a connection has been identified, to be estimated if these distributions are defined in terms of 
fibre orientation probability (producing fibre orientation probability density functions (PDFs)). One method for 
generating PDFs is by employing a model of the expected dispersion of fibre orientation information due to noise (9, 
17, 10, 18). Figure 3 shows a set of simulations indicating the degree of dispersion in fibre orientation expected due 
to noise at a range of tensor fractional anisotropy (FA) levels.  
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Figure 3. Left: dispersion in fibre orientation measurements due to noise over a range of FA. Dispersion is greatest 
at low anisotropy. True fibre orientation is along vertical axis. Right: fibre orientation Dispersion at FA = 0.78. The 
Gaussian function fitted to data indicates normally-distributed dispersion, allowing the definition of an easily-
parameterised PDF. For more detail see Parker & Alexander 2003. 

   Another class of distributed method involves the use of Monte Carlo, or probabilistic, streamline approaches (9, 
10, 19). These methods (closely related to the Monte Carlo simulated diffusion methods) use PDF definitions as 
above to define a distribution of possible streamline propagation directions at each point in the brain. Streamline 
propagation is then repeated (typically 1000 – 10000 times from each start point (20)), with random sampling of 
these distributions on each iteration. Again, the number of times that each voxel in the brain encountered by a 
streamline is recorded, and this is used to define the probability of connection.  
   Care is required in the interpretation of connection probability. A model of the diffusion phenomenon is required 
(such as the diffusion tensor) to tell us how to infer fibre orientation information from a DWI acquisition. The PDF 
describing the likely distribution of possible fibre orientations at any given point in the brain is subsequently 
generated using this model. A measure of probability that two brain voxels are connected may be generated if firstly 
the model describing the relationship between the observed DWI signal and fibre orientation is accurate, and 
secondly if the connection probability is defined as the path integral of the local fibre orientation PDFs. In practice 
our knowledge of the relationship between DWI observations and underlying fibre orientation distributions within 
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an imaging voxel is poor, with the exception of identifying the dominant fibre orientations; therefore the first 
condition is not in general met. However, even with this significant caveat in place, a large amount of progress has 
been made in deriving probabilistic maps of brain connections that answer the question, ‘‘how confident can I be 
that a route of connection, as represented by my model of the relationship between fibre orientation and my DWI 
data, exists between point A and point B in the brain?’’ 
 
3. The Tensor and Beyond 
 
3.1. Limitations of the Diffusion Tensor 
   The diffusion tensor was the first model applied to DWI data to estimate the orientation of fibre bundles (3) and 
most fibre tracking methods have until recently relied on this information. However, a number of authors have 
demonstrated that there are numerous brain regions in which the diffusion tensor is a poor model of the measured 
diffusion signal (21-24). This is because the tensor can identify at most a single dominant fibre orientation, whereas 
in many parts of the brain more complex fibre architecture is present. These situations occur when fibres cross (for 
example where the corticospinal tract, running superior–inferior, encounters callosal fibres running left–right in the 
centrum semiovale), diverge/converge (for example in the corona radiata) or display tight curvature (for example in 
the optic radiation). In such cases more sophisticated models of the observed diffusion characteristics are required.  
 
3.2. Incorporation of Complex Fibre Architecture 
  Models of complex fibre architecture that have been utilised for tractography include tensor mixture models (25, 
10, 26), diffusion spectrum imaging (27, 28), PAS-MRI (18), spherical deconvolution (29), and q ball (30, 31). All 
tracking methods that use the diffusion tensor may be extended to cope with multiple fibre populations. For 
example, streamline tracking and streamline-based probabilistic methods may be extended to multiple fibre 
populations by the incorporation of a simple choice regarding which population to follow based on the orientation of 
the previous propagation direction (25, 10, 28, 18, 31). Figure 4 shows an example of probabilistic tracking from the 
parahippocampal gyrus using q ball to derive up to 4 possible fibre orientations per voxel, as described in (31). 
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Figure 4. Orthogonal views of the results of probabilistic fibre tracking using q ball with a start point in the left 
parahippocampal gyrus. Probabilistic tracking output is shown as a projection in each view. 

4. Quantification using Fibre Tracking 
   Much work using fibre tracking has to date focussed on qualitative assessment of fibre tract trajectories. This has a 
number of potentially useful applications, such as for surgery planning (see for example (32)) and for understanding 
gross anatomy (see for example (4, 33)). However, tractography may also be used to derive quantitative information. 
 
4.1. Tract Volume and Path Density Measurements 
   Fibre tracking may be interpreted as a segmentation procedure. The result of this segmentation is volumes that 
represent specific fibre tracts. Measurement of the volume of these fibre tracts is therefore possible. Figure 5 shows 
an example of tract volume measurements in the left and right hemisphere of fibre tracts associated with language 
function, showing clear lateralisation to the left hemisphere in a group of right handed volunteers (34, 26). An 
alternative approach, when using a streamline-based method, is to measure the number of streamlines that are 
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associated with a specific tract. Similar connection lateralisation information has been derived using this approach 
(35).  

 

Figure 5. Left and right connecting volumes associated with Broca’s and Wernicke’s areas. The maps on the left 
show the degree of overlap (C) across the group of individual tracking results (scaled between 0 and 1). The graph 
on the right summarises the volumes at each value of C for the left and right hemispheres, in addition to the 
lateralisation index (LI). 
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4.2. Tract Microstructure Measurements 
   Isolation of a specific tract using tractography allows interrogation of the tract for evidence of damage. Indices 
such as diffusion anisotropy, relaxation times, and the magnetisation transfer ratio may all be measured within the 
tract, which provides a degree of network specificity unavailable without tractography. This may be of interest in 
understanding the effects of pathology – for example the effects of multiple sclerosis lesions on the microstructure 
of the motor pathways (36). The anisotropy of fibre bundles isolated with tractography has also been shown to relate 
to the amplitude of signal change associated with functional activation in related cortical areas (20). 
 
4.3. Connection Probability Matrices 
   Probabilistic tracking methods allow the confidence of connection between regions to be established. Given 
multiple inter-regional tracking experiments it is possible to derive connection matrices that record each measured 
point-to-point or region-to-region connection probability (27, 37). Recent work has demonstrated that this 
information allows specific identification of cortical functional regions according to their connection profile, 
generating an independent means by which certain functional areas may be identified within the grey matter (37). 
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